电子元器件失效分析的失效模式和分析方法

电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。因此,必须重视和加快发展元器件的可靠性分析工作,通过分析确定失效机理,找出失效原因,反馈给设计、制造和使用,共同研究和实施纠正措施,提高电子元器件的可靠性。

超级电容(EDLC)技术指南连载(一):村田超级电容的原理与构造

1. 1 超级电容的原理

超级电容中没有类似陶瓷电容器和电解电容器的电介质。而是利用固体(电极)和液体(电解液)的界面形 成的电气双层来代替电介质。容量的大小与在界面形成的电气双层成正比。因此电极通过利用比表面积的大活性 炭来实现大容量。基本构造是通过电解液填满相互对立的正负电极构造(图 1)。 超级电容利用电解液中离子对电极表面的吸附·脱离来充放电。

【下载】安全规格认证型/中高压用陶瓷电容器产品目录

村田拥有广泛的陶瓷电容产品阵容,可以对应各种各样的需求,并且提供最适合的解决方案。通过本目录可详细了解村田安全规格认证型/中高压用陶瓷电容器的特性及应用。

ESD静电防范常见问题及解决方案

ESD静电防范常见问题及解决方案静电是人们非常熟悉的一种自然现象。静电的许多功能已经应用到军工或民用产品中,如静电除尘、静电喷涂、静电分离、静电复印等。然而,静电放电 ESD(Electro-Static Discharge)却又成为电子产品和设备的一种危害,造成电子产品和设备的功能紊乱甚至部件损坏。

MEMS加速度计与MEMS陀螺仪有什么区别?

MEMS陀螺仪测角速度的,MEMS加速度是测线性加速度的。前者是惯性原理,后者是利用的力平衡原理。加速度计在较长时间的测量值是正确的,而在较短时间内由于信号噪声的存在,而有误差。陀螺仪在较短时间内则比较准确而较长时间则会有与漂移而存有误差。因此,需要两者(相互调整)来确保航向的正确。现在一般的姿态方面的惯性应用,如IMU(惯性测量单元),由三轴陀螺仪和三轴加速度计组合而成。

浅谈开关电源PCB设计

PCB设计对电源的参数有重要的影响。一个差的PCB,EMC性能差、输出噪声大、抗干扰能力弱,甚至基本功能都可能有缺陷。本文结合开关电源的特点及工程经验,简述开关电源PCB一些最基本的原则。

1、间距

【下载】汽车用片状多层陶瓷电容器产品目录

村田车载专用陶瓷电容器产品线在推进大容量化的同时,对品种进行了切实地扩充,加入了可满足高端需求的产品,如可承受150℃高温的产品、小型产品、耐温度循环及基片曲翘性能出色的树脂电极产品等,全面满足了汽车厂商及车载设备厂商的需求。

村田臭氧发生器模块

村田臭氧发生器模块是一款活性氧模块,设计用于高效生成所需数量的臭氧。 采用低温共烧陶瓷 (LTCC) 基板,可确保稳定地产生臭氧。 LTCC 的烧结温度低于 1000°C,因此能够在其内层布线中使用电阻非常小的银、铜和导体。 

汽车抗电磁干扰的措施有哪些?

汽车产生电磁干扰的源,不单纯是点火系统,应用于车辆上的各种电子电器设备也同样产生电磁干扰。干扰不但对车辆外界的无线电设备造成影响,而且也会对车辆内部的各种电子部件造成不良影响。

1.汽车内电磁干扰现象

汽车产生的电磁干扰会在汽车内部造成相互影响,举例如下:

【下载】旋转位置传感器产品目录

旋转位置传感器是位置传感器的一种,特点在于旋转角度可以通过输出电压来读取。原理是根据随旋转而变的阻抗,变化输出电压,检测出电压便能轻松得到旋转角度。因为它被用作高寿命传感器,不像微调电位器,它具有高旋转寿命特性。