从欠阻尼到过阻尼:一文看懂GaN栅极波形如何“翻身”

增强型GaN HEMT具有开关速度快、导通电阻低、功率密度高等特点,正广泛应用于高频、高效率的电源转换和射频电路中。但由于其栅极电容小,栅极阈值电压低(通常在1V到2V之间)、耐受电压低(通常-5V到7V)等特点,使得驱动电路设计时需格外注意,防止开关过程中因误导通或振荡而导致器件失效。

NSD2622N.png

为应对这一挑战,本文深入分析GaN HEMT在开通与关断时的振荡机制,通过合理配置驱动电阻与栅源间RC吸收支路等策略,有效抑制振荡与过冲。同步结合纳芯微高压半桥NSD2622N GaN HEMT驱动器的应用测试,验证了多种器件与参数组合下的优化效果,助力系统实现稳定、可靠的高频驱动设计。

GaN HEMT开关过程中振荡机制与驱动设计考量

图1 GaN HEMT驱动电路.png

图1 GaN HEMT驱动电路

常见的GaN HEMT驱动电路如图1所示,工作时分别由电阻R1和R2来调节其开通和关断速度。该驱动电路可以看作一个串联的LRC电路。GaN HEMT开通时,受漏极高的dv/dt和米勒电容CGD的影响,栅极电压可能出现振荡或过冲,其电流路径如图1中的ISRC所示。这种振荡或过冲将引起GaN HEMT功耗增加或失效。为了避免过大的振荡或过冲,开通时总的栅极等效电阻建议大于公式(1)中给出的值。

公式1.JPG

其中LG为开通时总的等效寄生电感,RG(eq)为开通时总的等效驱动电阻,CGS为GaN HEMT的栅极等效电容。

GaN HEMT关断时,受驱动回路寄生电感和栅极关断速度的影响,栅极电压可能出现负向过冲或振荡,这种过大的负向过冲或振荡可能导致栅极击穿或误导通。其电流路径如图1中的Isink所示。设计时要避免这种过大的负向过冲或误开通发生。

从图1可以看到,开通和关断时的电流路径ISRC和Isink有所不同,对应的开通和关断时总的等效寄生电感LG和等效电阻RG(eq)会有所差异。其中开通时总的等效寄生电感LG包含了的电源部分的寄生电感,而关断时LG则不包含电源部分的寄生电感,分析计算时要注意。

为了更直观的理解不同驱动电阻对GaN HEMT的影响,我们采用双通道半桥 GaN HEMT驱动器NSD2622N配合不同的GaN HEMT进行了测试验证。下面就相关器件和验证结果进行简要介绍和说明。

纳芯微高压半桥GaN HEMT驱动器NSD2622N

纳芯微NSD2622N是一款QFN 5X7的高压半桥GaN HEMT驱动器,其功能框图和管脚定义如图2和图3所示。该芯片采用了成熟的电容隔离技术,可以满足高压应用要求。其高低边均集成了专用的正负电压调节器,其中正压为5V~6.5V可调,负压为固定的-2.5V,为GaN HEMT提供可靠的负压关断;该芯片具有传输延时短、驱动电流大(峰值电流分别为2A/-4A)等特点,可以满足不同系统的应用要求;同时还具有欠压保护、过温保护和死区互锁等功能,其中死区互锁功能可以有效防止桥臂的上下管直通。此外,该驱动器还提供一路5V的LDO输出,为系统设计提供更多的便捷性。

图2 NSD2622N功能框图.png

图2 NSD2622N功能框图  图3 NSD2622N Pin定义

GaN HEMT的参数介绍

试验中采用了两款具有开尔文引脚的TOLL封装高压GaN HEMT进行验证,型号分别为INNO65TA080BS和GS0650306LL,对应的主要参数如下表所示。

主要参数.png

实验结果

图4 双脉冲测试框图.png

图4 双脉冲测试框图

我们采用框图4所示的双脉冲电路对不同驱动电阻下GaN HEMT的栅极波形进行测试验证。其中NSD2622N驱动回路的参考地和GaN HEMT开尔文脚连接,开通时栅极驱动环路总的寄生电感约为38nH,根据 GaN HEMT的规格书CISS计算得到开通时的等效电阻RG(eq)应不小于26Ω。为了直接观察欠阻尼对驱动的影响,R1分别采用10Ω和27Ω进行了对比验证,测试波形如下表1所示,其中蓝色为GaN HEMT的漏极波形,绿色为电感LM的电流,黄色为GaN HEMT的栅极波形。

表1 调整前的开通波形.png

表1 调整前的开通波形

从表1中的波形可以看到, R1为10ohm时,开通驱动回路工作在欠阻尼模式,总线电压50V左右时,两款GaN HEMT的栅极和漏极电压均出现高频振荡,系统无法正常工作;R1为27ohm时,400V电压下,两款GaN HEMT均能正常工作,但INNO65TA080BS在开通过程中,栅极电压出现较为严重的高频振荡。究其原因,主要是由于两款GaN HEMT内部源极的寄生电感和开通时的di/dt存在一定的差异,这种差异导致栅极高频振铃明显不同。为了减小这种振荡,进一步增加驱动电阻R1到33ohm或在栅源极之间并联RC(20ohm+1nF)支路,降低GaN HEMT的开通速度,减小开通时的di/dt,相应的开通关断波形见表2和表3。

表2 调整参数后的开通波形.png

表2 调整参数后的开通波形

从表2的波形中可以看出,400V总线下,两种方案下工作正常,栅极的高频振荡和过冲明显改善。其中栅源之间并联RC支路与单纯增大R1相比,栅极电压更加平滑,无明显过冲,但开通延时更长,功耗会有所增加,设计时需要注意。

表3 关断时的波形.png

表3 关断时的波形

从表3的波形可以看到,负压关断时,栅极出现明显的负压过冲和振荡,但没有出现误开通。其中栅极没有并联RC支路时,负压过冲超过-5V;并联RC支路后,负压过冲幅值明显减小。关于关断时栅极的负压过冲和振荡可以通过调整电阻R2阻值或并联RC支路的参数来进一步优化。

结论与建议

实验结果表明,合理的栅极驱动电阻可以保证GaN HEMT正常稳定工作,过小的驱动电阻易造成栅极电压出现振荡,严重的会导致系统无法正常工作或失效。因此在设计增强型GaN HEMT的驱动电路开通时,栅极驱动电阻尽量满足:

代码2.JPG

以此来避免开通时栅源电压出现过冲振荡,并且计算LG时,要充分考虑驱动回路中PCB走线的寄生电感和芯片的寄生电感。同时,针对不同的GaN HEMT, 栅源之间可以适当的并联RC支路,有效吸收开通关断时的振荡尖峰。对于高压的GaN HMET,采用负压关断可以防止关断过程中栅极误导通。此外,驱动芯片尽可能靠近GaN HEMT, 减小驱动回路的寄生电感,同时尽量选用带有开尔文脚的GaN HEMT。

文章来源:纳芯微电子