跳转到主要内容
Toggle navigation
首页
技术
新闻
视频
下载中心
登录
注册
PCB板上可以走100A的电流吗?
通常的PCB设计电流都不会超过10A,甚至5A。尤其是在家用、消费级电子中,通常PCB上持续的工作电流不会超过2A。但是最近要给公司的产品设计动力走线,持续电流能达到80A左右,考虑瞬时电流以及为整个系统留下余量,动力走线的持续电流应该能够承受100A以上。 那么问题就来了,怎么样的PCB才能承受住100A的电流? 方法一:PCB上走线 要弄清楚PCB的过流能力,我们首先从PCB结构下手。...
阅读详情
2021-03-05 |
EMC与电容(3)
文 | 刘为霞 一博科技高速先生团队队员,来源:高速先生微信公众号 对于电容,从理想的角度来讲,应该是电容的容值越大,容抗越低,对交流的滤波效果越好,然而实际上一般容值越大的电容,寄生电感也越大,其实际的阻抗值为: ,电容的特性阻抗曲线如下图所示:
2021-03-05 |
如何使用PCB孔来减少EMI?
PCB中的安装孔是电子设计中的重要元素,每个PCB设计师都会去了解PCB安装孔的用途以及基本设计。并且,当安装孔与地面连接时,可以节省安装后的一些不必要的麻烦。 如何使用PCB孔来减少EMI? 顾名思义,PCB安装孔有助于将PCB固定到外壳上。不过这是它的物理机械用途,此外,在电磁功能方面,PCB安装孔还可用于降低电磁干扰(EMI)。 对EMI敏感的PCB通常放置在金属外壳中。为了有效降低EMI...
阅读详情
2021-03-04 |
解决传输过程中的电磁干扰的几种方式
电磁干扰(EMI)是干扰电缆信号并降低信号完好性的一类电子噪音,EMI通常由电磁辐射发生源,如马达和机器所产生。电磁干扰是很早便被发现的一种电磁现象,几乎和电磁效应现象同时被科学家发现。1981年,英国科学家发表讨论电磁干扰问题的文章,标志着研究电磁干扰问题的开始。1989年,英国邮电部门研究了通信中的干扰问题,使干扰问题的研究开始走向工程化和产业化。 电磁干扰,必须具备电磁干扰源、耦合途径、...
阅读详情
2021-03-04 |
电路板中晶振该如何设计?
晶振存在于大大小小的电路板中,就连我们意想不到的吸尘器中也会有晶振的存在,那么在设计电路中有关于晶振的设计,我们应当如何设计呢? 一、关于晶振设计的注意事项 1、在电路设计中,我们务必要让晶振,外部电容器与IC之间的信号线尽可能保持短。其根本在于当非常低的电流通过IC晶振振荡器的时候,线路太长的话,会导致它对EMC,ESD与串扰产生非常敏感的影响。而且线路太长会给振荡器增加寄生电容。 2、...
阅读详情
2021-03-04 |
为何维护工作中应用IoT非常重要?
针对工厂设备故障等的维护工作通常会出现劳动力短缺或技能需要由人实现的情况,容易导致“经验和技能依赖”,即依赖维护人员的经验和技能。考虑到未来数年提高工厂竞争力和生产率的现实需要,业务“标准化”已成为重要的关键词,即,使更多人能够从事维护工作,而不是依赖少数负责人的“经验和技能”。被称为“工厂管理专家”的JEMCO日本经营顾问古谷贤一进行了说明。笔者就摆脱维护工作中依赖“经验和技能”...
阅读详情
2021-03-03 |
工程师必看!PCB布局的热设计要求
在PCB设计中,“散热”是一个很重要的概念,工程师需要要考虑和满足热设计的要求。那么,怎样的PCB布局才能达到最好的散热效果呢? PCB热量来源 PCB中热量的来源主要有三个方面: 电子元器件的发热; PCB本身的发热; 其它部分传来的热。 在这三个热源中,元器件的发热量最大,是主要热源,其次是PCB板产生的热,外部传入的热量取决于系统的总体热设计,暂时不做考虑。...
阅读详情
2021-03-03 |
三招破解EMC,这么牛?
在现在产品中,电磁干扰问题越来越成为产品关注重点,也成为产品进入国外市场的重要瓶颈。由于中国长期忽略这块,以及这块的测试设备及其昂贵等众多因素,国内在这块领域中发展相对缓慢。 了解这块的工程师少之又少,成为大多数工程师及国内企业研发部最为头疼的事情,它们在解决这类产品问题的时候,大多都是盲人摸象,走了很多弯路之后,才勉强把问题解决。这类经验并且具有不可复制性,在开发下面产品中依旧会面临各种问题,...
阅读详情
2021-03-03 |
从TMR的国内外现状、壁垒解析未来破局点
作者: 走芯人,来源: 走芯人微信公众号 之前写过一篇关于TMR技术功能和优势的内容,因而也收到一些技术工程师的回应和问询,主要关于国内TMR的环境和目前现状。
2021-03-02 |
热敏在输入回路里面的作用,这6点要谨记!
作者:姜维老师,来源:电源研发精英圈 如果输入回路里面没有NTC(热敏电阻)时,当AC输入电压在最高电压并且在峰值时开机,输入的冲击电流非常大,可能导致保险丝与整流桥损坏。如果多个没有加热敏电阻的电源同时启动,也可能会导致电源端口的输入电压波形畸变,有可能会导致与他同一个源的其他设备出现重启等问题。 I-inrush=Vac*1.414/r 这里的r是输入回路里面自身的内阻,非常小。 图1...
阅读详情
2021-03-02 |
PCB设计故障的三大原因
作为工程师我们想到了系统可能发生故障的所有方式,并且一旦发生故障,我们已经准备好对其进行修复,避免故障在PCB设计中更为重要。更换在现场损坏的电路板可能会很昂贵,而且客户的不满意通常会更加昂贵。这就是在设计过程中牢记PCB板损坏的三个主要原因的重要原因:制造缺陷,环境因素和设计不足。 尽管其中一些因素可能无法控制,但在设计阶段可以缓解许多因素。...
阅读详情
2021-03-02 |
ESD防护的PCB设计准则
PCB布线是ESD防护的一个关键要素,合理的PCB设计可以减少故障检查及返工所带来的不必要成本。在PCB设计中,由于采用了瞬态电压抑止器(TVS)二极管来抑止因ESD放电产生的直接电荷注入,因此PCB设计中更重要的是克服放电电流产生的电磁干扰(EMI)电磁场效应。本文将提供可以优化ESD防护的PCB设计准则。 1、电路环路 电流通过感应进入到电路环路,这些环路是封闭的,并具有变化的磁通量。...
阅读详情
2021-03-01 |
射频工程师最关心的5G NR空口物理层主要参数解读
1. 参数集的定义 在3GPP 38.211规范中对参数集(Numerologies)的定义是由于“子载波间隔(SCS,sub-carrier spacing)”变化引起的各项时域和频域相关参数的变化。因为只有一个子载波间隔(即15kHz子载波间隔),所以LTE不需要任何专门术语来表示子载波间隔。而在5G NR中目前定义了五种不同类型的子载波间隔,如下表所示。为了实现不同参数集之间的高复用率,...
阅读详情
2021-03-01 |
LoRa优缺点及其网络架构
LoRa 是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。 许多传统的无线系统使用频移键控(FSK)调制作为物理层,因为它是一种实现低功耗的非常有效的调制。 而LoRa 则是基于线性调频扩频调制,它保持了像 FSK 调制相同的低功耗特性,也明显地增加了通信距离。 LoRa技术本身拥有超高的接收灵敏度和超强的信噪比。 LoRa融合了数字扩频...
阅读详情
2021-03-01 |
什么是电容的容抗与容量?
电容对交流电的阻碍作用叫做容抗。 电容量大,交流电容易通过电容,说明电容量大,电容的阻碍作用小;交流电的频率高,交流电也容易通过电容,说明频率高,电容的阻碍作用也小。 实验证明,容抗和电容成反比,和频率也成反比。 如果容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。...
阅读详情
2021-02-26 |
‹‹
622 中的第 350
››